Know Your Techniques: Accuracy, Precision, and Using the Right Instrument

Scientist pouring liquid into graduated cylinder

You’re in the lab and need to prepare a sample. Do you use a volumetric flask or an Erlenmeyer? The analytical balance or a top-loader? What about pipettes? Choosing the right equipment is the first step in a successful experiment. You need precise measurements at each step because small errors can add up quickly. But sometimes you don’t actually need the most accurate values, and spending a lot of time using more precise options might not provide any benefit.

How can you decide if (and when) accuracy and precision are worth the extra effort? How do you select the right measuring instrument? Read on to find out.

Understanding Accuracy and Precision

In experimentation, it’s important to remember what we mean by accuracy and precision. Accuracy is how close your value is to the true value. The problem is you can’t always know what the actual value is. If you’re in a lab for a chemistry course, chances are the instructor or TA knows the value you should get and can let you know how accurate you are. But for research projects, often you won’t know the value. In fact, you’re usually trying to find it.

This is where precision comes in. Precision is how reproducible your results are, or how close a set of measurements are to each other. If you measure the volume of a liquid multiple times with the same piece of glassware, do you get the same value each time? If you do, you know you’re being precise, even if you can’t determine your accuracy.

Striving for high precision ensures you’re doing your best to eliminate errors from measurements and calculations. The more precise you are, the better your chances are of getting an accurate result because high-precision equipment is usually calibrated to a high degree of accuracy. If you are struggling with precision, it is usually a sign that you are using the instrument incorrectly or there is a problem with the equipment itself.

It is possible to have precise measurements and still get the wrong result. Your hypothesis or calculations might be wrong, your equipment might need to be recalibrated, or your reagents might be contaminated. But for now, let’s focus just on precision.

Another way to achieve better precision (and therefore, hopefully, high accuracy) is to be able to report your values to a larger number of significant figures. Significant figures are all the digits in a measured or calculated value you know for certain, plus a final digit that contains some uncertainty. All measurements have an inherent amount of uncertainty, which is reflected in the number of digits you can report in a measured or calculated value.

For example, 800 mL beakers are marked to every 100 mL. You can know the hundreds place with high certainty, but you have to make your best guess at the tens place. Similarly, a 100 mL graduated cylinder is marked to every 1 mL. Therefore, you can know the ones place and higher values with certainty, but you have to make the best guess at the tens place.

Digital readouts are simpler: the more values given, the more precise your measurement is. A top-loading balance may only give you two decimal places in your mass reading, whereas an analytical balance may give you three or four decimal places. If your sample is more than 10 g, a top-loading balance will give you at least four significant figures. However, samples smaller than 1 g need to be measured on an analytical balance to get the same precision.

More significant figures mean higher precision, but do we always need to be very precise? Sometimes we need a very precise and accurate value, while other times close enough is good enough.

You need to consider why you are preparing the sample. Analytical work typically requires precision. A solution to use in a titration will probably require high accuracy, as you are using it to determine an unknown. If you’re making a solution you’re going to standardize later, you might just need to know the approximate concentration of the solution, since you’ll be determining the precise value later.

You can also look to your procedure to find out how precise you need to be. For example, does your procedure call for you to make a 1 M solution or a 1.00 M solution? A 1 M solution just needs to be around 1 M, whereas a 1.00 M solution would require much more precision in its preparation so you can more accurately know its concentration.